CONJUGATE PROBLEM OF NATURAL CONVECTION
IN A VERTICAL CHANNEL WITH HEAT RELEASE
FROM A HIGH-FREQUENCY ELECTRIC CURRENT

Vu Zuy Quang UDC 536.25

1t is shown that allowance for the finite thickness and finite thermal conductivity of the walls
results in more intense convection and heat exchange. The region of parameters where the
problem of convective heat exchange must be stated as conjugate is indicated.

1. The convective motion of an electrically conducting liquid between parallel planes in a magnetic
field has been considered in a number of works. The systematic study of this question both theoretically
and experimentally began long ago [1] and continues to the present [2-5]. The statement of the problem has
gradually become complicated. Reports have appeared in which the effects of the electrical conductivity of
the wall, of viscous dissipation, and of the Joule heat release of a constant current on the magnetohydro-~
dynamic flow in a flat channel are discussed [6-9]. The problem has been formulated as conjugate, i.e.,
the energy equations in the liquid and the walls are solved jointly using MHD equations, with the tempera-
tures and heat fluxes being equal at the solid—liquid boundary [10-13].

In the present report the conjugate problem is examined with allowance for the Joule heat release due
to the flow of a high-frequency current,

2. The one-dimensional stationary convection of an electrically conducting liquid in a vertical chan-
nel of width 21 with thermally conducting walls of thickness h is examined. The external magnetic field B
is constant and perpendicular to the walls (along the x axis). The variable electric current flows in a di~
rection perpendicular to the plane of the stream and the magnetic field (along the z axis). It is assumed
that the voltage of the applied electric field is much greater than the induced voltage E; > Ez in and jz/a
o jzz/ 0. In the fully developed one~dimensional mode all the values depend only on x (except for the pres-
sure). Consequently the induced magnetic field has a component only along the y axis. The equations for
the region of the liquid are written as follows:
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The heat conduction equation for the walls, in which there are no internal heat sources, will be
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sz - (3)
The following boundary conditions are adopted for Egs. (1)-(3):
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e P ~ Here all the notation is standard and the index 1 pertains to the walls;
/ : g Ko is the magnetic permeability of .a vacuum (4n- 1070,
]
In order to jointly solve Eqs. (1)-(4) it is assumed that E,(x, t)
" = E 55(x) exp (wt) and that the frequency of the electric field is high
enough that the Joule heat release can be replaced by a value averaged
¢ L over the period:
/ 7 \
] z -
2 (E;) = 5 i CE,H) =0 (141 .
1 1 . Let us convert to dimensionless variables in Eqs. (1)-@4). The
o following are chosen as the scale for the distance, temperature, vel-
ocity, and field, respectively: I, AT, V = gBl?’AT/v; Egy. If one in-
” troduces the dimensionless values £ = x/I; 6 = (T—T)/AT; ¥=v/V,
4 sl ﬁzz = Ezz/E z200 then Eqs. (1)-(4) are written (omitting the sign ~) as:
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Fig. 1. Profiles of dimen- BE
sionless temperature (a) and — = 2nE,y;
velocity (b) over channel eross
section at S =3 and n = 1 for a0, _ 0:
different ¥, Curvesl, 2, and dx? (7
3 correspond to the values 0, 46 W 4o
_ =1 p=0; B=80; —="%1 . E,=1;
1, and 3 for &, x=+1: v=0; v T dx 2
h ) .
x=+[1L+ =} 8;,==1,
¥ == ( !, i (8)

The dimensionless parameters Ha, S, n, and N have the following form: Ha = BglV 6/ is the Hart-
mann number; S = ol?E%,/2)0AT characterizes the ratio of Joule heat to the heat transmitted by thermal
conduction; n = Wp,0w/2 characterizes the ratio of the half-width of the channel to the thickness of the elec-
trical skin layer; N = g%%0B?AT/Av characterizes the body force.

The boundary conditions for the temperature of the liquid can be written in another form. By solving
Eqs. (7) with the appropriate boundary conditions (8) we will have

dy 18 . do 1+

X =41 = P X e=m— = —

odx v dx ¥

where ¥ = Ah/Ayl characterizes the ratio of thermal conductivities and thicknesses between the liquid and
the walls. At ¥ = 0 we obtain the ordinary thermal boundary conditions when a constant but different tem-
perature is given at the walls: 6(+1) = *1.

Equations (5) are nonlinear, but since the parameter N is small one can seek a solution 8, v in the
form [6, 8]

0 =0,-+- N8, v=uy,-+ Nu,
where 8), v, is the solution for the case when the Joule heat release from the induced current is neglected

in the energy equation; 6, and v, are disturbances relative to 8, and v.

One can clearly show when this analysis is justified. For example, for mercury when ! = 1 cm we
have AT = 5°C and N = 2.4 1073,

For the null approximation we obtain a system of linear equations

26, "d®v
dx? + SlEzzlz =0, dx?

— Ha? v, + 8, =0

with the boundary conditions (8).
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Flg 2. Position of maximum in temperature and vel-
ocity as a function of S and ¥ atn =1. Curves 1, 2,
and 3 correspond to the values 0, 1, and 3 for ¥,

Let us write the solution for E,,, 84 v

N;{2nx)
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Ni,»(€) = ché £ cosé, A, B, and D are constants of integration.

The expressions for 6, and v, are omitted since they are cumbersome. The system of equations (5)-
(7) can be solved numerically.

3. Let us study in detail the effect of the finite thickness and finite thermal conductivity of the walls
on the convection and heat exchange in a channel without an external magnetic field and also in the case
when this effect can be neglected. For this we write the definite solution which is obtained from Egs. (5)
or (9) by setting Ha = 0 there:

0=0,
. S :
= ——= [N, (2nx5) — N, (2n) & 2n®N, (2n) (1 — &*
D= Tom gy Va2 — N (0) & 26N, (2n) )
. : (10)
. X—Xx L SV sh2n +-sin2n (1 — ).
6(1 + %) 4n Ny (2n)

Let us consider some limiting cases of (10). Suppose there is no current (S = 0) and the wall thick-
ness is infinitely small (h — 0) or the thermal conductivity of the walls is infinitely large (3; = «), i.e.,
¥ = 0. Then the temperature and velocity profiles represent a straight line and a cubic parabola, respec-
tively. This is the well-studied case of natural convection in a vertical channel with a constant and dif-
ferent wall temperature {15].

The combined natural convection and convection induced by a high-frequency electric field in a chan-~
nel occurs when ¥ = 0 [16]. Then the temperature and velocity profiles vary as a function of the voltage
{the parameter S) and the frequency of the current (the parameter n): a maximum develops in the tempera-
ture while the minimum disappears for the velocity in the cavity.

Another limiting case is obtained from (10) when n — 0, Then the heat release is the greatest and
the corresponding temperature and velocity distributions have the following form:
X

S
8= — (1 —x?- L 8¥,
T Ty
_ 1
v_i(l_xz)_i__i:fs_._}_slp‘ 1—# &
T4 v 6(1 + V) 2

It follows from (11) that for a fixed S the témperature and velocity increase with an increase in ¥, This
means that with the conjugate condition the heat is drawn off from the walls less than in the case of natural
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Fig. 3. Curves (1-4) for @ =0 and ¥ =0, 1, 5, 10 (2) and
Vmin for ¥ =0, 0.5, 1 (b) as a function of S and n.
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v convection. The position of the temperature maximum is determined by
\ the expression x = 1/S(1 + ¥), and the position of the velocity extremum
§ is determined by :
x={—S(U1+¥)B+6¥) VI -VPE-6UF 12} —61— .
4 7 It is seen from these equations that with an increase in ¥ the position of
the maxima approaches the center x = 0, while the minimum in the vel-
K . ocity distribution now occurs at small S, Consequently, in this limiting
! \ case owing to the parameter ¥ the convection in the channel is already
s . e\ sl caused mainly by Joule heat release beginning with small values of S.
Fig. 4. Ratio Q = 0.01'Q as A numerical analysis of Eq. (10) is required in general. For a
a function of S and ¥ for dif- more graphic representation of the variation in temperature 4 and vel-
ferent n. Curves 1, 2, and 3 ocity v profiles of g and v are constructed in Fig. 1a, b for fixed values
correspond to the values 0, 1, of S and n and different values of the parameter ¥, It is seen from the
and 5 for n. graphs that the finite thickness and finite thermal conductivity has a

marked effect on the temperature and velocity. With an increase in ¥

the Joule heat release builds up more and more, as a result of which
the convection intensifies and the temperature and velocity profiles become more regular parabolas, i.e.,
the maximum of ¢ and v is displaced toward the center. This is well seen in Fig. 2a, b where the position
of the maximum temperature and velocity is shown as a function of S for different ¥ at a fixed n. With an
increase in ¥ a maximum in the temperature in the cavity, which does not exist in the case of mixed con-~
vection, already appears at small values of S.

The portion of the convection which is due to the allowance for the finite thickness and finite thermal
conductivity of the walls is easily estimated quantitatively from the parameters S and n which provide for
the appearance of a temperature maximum and the absence of return flow within the channel for different
values of ¥. Graphs of the values of n, S, and ¥ for which these conditions are satisfied were calculated
and plotted. The curves in Fig. 3a correspond to a heat flux at the right wall equal to zero. In the region
to the right of these curves the temperature nowhere can have a maximum. The curves in Fig. 3b corre-
spond to the minimum velocity, equal to zero. To the left of these curves the velocity profile does not
have a minimum, i.e., return flow, It is seen from the graphs that with an increase in ¥ the region where
a temperature maximum exists in the cavity and there is no velocity minimum expands, and at small values
of the parameter S.the convection induced by the high-frequency current already predominates over natural
convection: n < 10 for 0.15 =S < 10 when ¥ = 1,

Thus, the allowance for the finite thickness and finite thermal conductivity of the walls leads to the
fact that the convection and heat exchange become more intense. This is explained by the fact that heat is
drawn from the walls into the surrounding medium less than in the case without conjugate thermal condi-
tions.

In order to estimate up to what values of the parameter ¥ one can neglect the .effect of the finite thick-
ness and finite thermal conductivity of the walls on the convection and heat exchange it is appropriate to
study the ratio of heat fluxes Q/Q, when Q is 1% of Q. Qg corresponds to ¥ = 0. Let us calculate the heat
flux at the right wall
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The ratio Q/Q, as a function of ¥ and S for deferent values of the parameter n is shown in Fig. 4. In

the region to the left of these curves the thermal conjugate boundary conditions do not play an important

role. This region expands with an increase in n.
NOTATION
Tandv are the temperature and velocity;
A 0, v, and g are the coefficients of thermal and electrical conductivity, kinematic viscosity, and
volumetric expansion;
p is the density;
w is the angular frequency of current;
g is the acceleration of force of gravity;
i is the imaginary unit;
b4 is the coordinate perpendicular to channel.
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